Supermassive Black Holes Across Cosmic Time

Luis C. Ho (何子山)

Kavli Institute for Astronomy and Astrophysics Peking University

100,000 light years

Kitt Peak, Arizona

Fort Davis, Texas

approaching speed of gas clouds receding

SMBH ubiquitous in bulges

Nuker Team

Correlation Between Black Hole Mass and Bulge Mass

Gebhardt et al. (2000); Ferrarese & Merritt (2000); Gültekin et al. (2009)

Black Hole - Host Galaxy Scaling Relations

Kormendy & Ho (2013, ARA&A)

$$M_{\bullet} - M_{\text{bulge}}$$
 Relation

$$M_{\bullet} - M_{\text{bulge}}$$
 Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.49^{+0.06}_{-0.05}\right) \left(\frac{M_{\text{bulge}}}{10^{11} \ M_{\odot}}\right)^{1.16\pm0.08}; \text{ intrinsic scatter} = 0.29 \text{ dex.}$$

$M_{\bullet} - \sigma$ Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.309^{+0.037}_{-0.033}\right) \left(\frac{\sigma}{200 \ \mathrm{km \ s}^{-1}}\right)^{4.38 \pm 0.29} \text{ intrinsic scatter} = 0.28$$

T = 0 Myr

10 kpc/h

T = 0 Myr

10 kpc/h

Courtesy of S. Heinz

Courtesy of S. Heinz

When were BH-galaxy scaling relations established? How evolved?

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

 $M_{\rm virial} = f R V^2 / G$

f geometric fudge factor

R BLR radius

V BLR velocity dispersion

M• can be estimated to an accuracy of $\sim 0.3 - 0.5$ dex for $z \approx 0 - 6$

Correlation Between Black Hole Mass and Bulge Mass

Correlation Between Black Hole Mass and Bulge Mass

Mortlock et al. (2011)

Are there mini-quasars in these "simpler" galaxies?

$M_{\bullet} = 10^4 - 10^5 M_{\odot}$

POX 52 Sph or dE

POX 52 Sph or dE

 $M_{\bullet} = 1.6 \times 10^5 M_{\odot}$

Greene & Ho (2004, 2007a,b); Dong, Ho et al. (2012)

Greene & Ho (2004, 2007a,b); Dong, Ho et al. (2012)
HST/ACS

Greene, Ho & Barth (2008); Jiang, Greene & Ho (2011a, b)

Baby BHs in baby galaxies.

Ho (2016)

Summary

 \bigcirc Central BHs detected from $10^4 - 10^{10} M_{\odot}$

✓ All bulges contain BHs, but not all BHs live in bulges

 $\bigcirc M_{\bullet} \sim M_{\text{bulge}}^{1.2} \qquad \langle M_{\bullet} / M_{\text{bulge}} \rangle \sim 0.5\%$

 $\bigcirc M_{ullet} \propto \sigma^{4.4}$

 $\bigcirc M_{\bullet} - \sigma$ and $M_{\bullet} - M_{\text{bulge}}$ suggest BH-galaxy coevolution

Scaling relations already in place for high-z QSOs

Mild evolution for most massive BHs

Opportunities with ALMA

O BH masses using nuclear (cold) gas disks

ISM content of quasars at all redshifts

Dynamical masses of quasar host galaxies (CO ladder, [C II])
Gas distribution and kinematics

MEASUREMENT OF THE BLACK HOLE MASS IN NGC 1332 FROM ALMA OBSERVATIONS AT 0.044 ARCSECOND RESOLUTION

AARON J. BARTH¹, BENJAMIN D. BOIZELLE¹, JEREMY DARLING², ANDREW J. BAKER³, DAVID A. BUOTE¹, LUIS C. HO⁴, JONELLE L. WALSH⁵

Thirty-Meter Telescope (TMT)

Future Directions with TMT

LIGO, NSF, Illustration: A. Simonnet (SSU)

INSPIRAL

hinly A lin

MERGER

RINGDOWN

HANFORD, WASHINGTON LIVINGSTON, LOUISIANA

Future Directions with TMT

Oirect measurement of low-mass BHs in dwarf galaxies

O Direct measurement of BH masses in high-*z* inactive galaxies

O Direct measurement of BH-host scaling relations at high-*z*

Calibration of BH masses in reverberation-mapped AGNs

Stellar orbital structure of centers of BCGs, constrain growth mechanism of most massive BHs

Kavli Institute for Astronomy and Astrophysics (KIAA) 北京大学科维理天文与天体物理研究所

<u>References</u>

Ho (2008, ARA&A): Nuclear Activity in Nearby Galaxies

Kormendy & Ho (2013, ARA&A): Coevolution of Supermassive Black Holes and Galaxies

Greene & Ho (2004-2011, ApJ): Intermediate-mass BHs in Late-type Galaxies

Huang & Ho (2013a,b; 2016, ApJ): Two-Phase Formation of Massive Galaxies

Ho & Kim (2014, ApJ): The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies

Ho & Kim (2015, ApJ): A Revised Calibration of the Virial Mass Estimator for Black Holes in Active Galaxies Based on Single-epoch Hβ Spectra

Ho (2016, ApJ): Joint Evolution of High-redshift Quasars and Massive Galaxies

Barth et al. (2016a, ApJ): Toward Precision Black Hole Masses with ALMA: NGC 1332 as a Case Study in Molecular Disk Dynamics

Barth et al. (2016b, ApJ): *Measurement of the Black Hole Mass in NGC 1332 from ALMA Observations at 0.044 Arcsecond Resolution*