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the general idea: modify GR in the 
infrared using non-local terms 

•  motivation: explaining DE 
   IR modification    mass term? 

•  (local) massive gravity: Fierz-Pauli, dRGT, bigravity 
–  significant progresses (ghost-free), still open issues 

•  our approach: mass term as coefficient of non-local 
terms 



    non-locality emerges from fundamental local theories in 
many situations 

•   classically, when separating long and short wavelength and 
integrating out the short wave-length  
    (e.g cosmological perturbation theory) 

•   in QFT, when computing the effective action that includes the 
effect of radiative corrections. This  provides effective non-local 
field eqs for the vev of the fields 



•  UV divergences in curved space:  

–   well understood                   (e.g. Birrel-Davies textbook, 1982) 

–  renormalization of the UV divergences leaves finite non-local 
terms in the effective action. E.g. 
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–   related to running of coupling constant  

–   the imaginary parts describe particle production 

–   gives effects relevant only at large curvature  
    possibly relevant for the Big-Bang singularity, not for dark     

energy                              
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•  IR effects in curved space  are much less understood 

 interesting effects  in deSitter  for scalar fields with m << H   
–   super-Hubble fluctuations grow linearly in time 

–  and saturate at  

–   adding a λφ4 interaction, because of IR divergences, the actual 
loop expansion parameter is  λH2/m2 

     breakdown of perturbation theory            (e.g. Polyakov 1986,2012 
                                                                                           Burgess et al 2010) 

–   strong IR divergencies in inflationary correlation functions  
                                                                             (e.g. review Seery 2010) 
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Starobinsky 1986,... 



A related question: what is the EFT theory  at the horizon 
scale? 

•   the standard Wilsonian EFT is not the appropriate framework:  
     the IR and UV sector exchange energy because of the time- 

dependent background 

•   EFT of open system  
–   e.g. Starobinsky stochastic eq. for super-Hubble modes                                    
–   no effective low-energy action. Rather stochastic and dissipative eqs for the 

IR modes 
–  in general this produces non-Markovian dynamics -> non-locality in time 
                                          Burgess,Holman, Tasinato and Williams 1408.5002 
                                         Agon,Balasubramanian,Kasko,Lawrence 1412.3148 



bottomline: 

–   IR effect in curved space are not well understood 

–  potentially relevant for understanding dark energy 

–  generically, these effects should generate non-local terms in 
effective actions  



•  top-down approach: find the correct fundamental theory and the mechanism 
that generates nonlocality 

•   bottom-up: find first the correct effective 
    theory 

•  e.g. Standard Model vs Fermi theory 
–  start from the fundamental YM theory 
–  or understand which terms correctly  
   describe weak interaction at low energies 

e.g. ( ̄ )2, ( ̄�5 )2, ( ̄�µ )2,
. . . [ ̄�µ(1� �5) ]2,

a phenomenological attitude: which effective nonlocal theories 
can give a  meaningful cosmology? 



some sources of inspiration: a locality / gauge-invariance 
duality  for massive gauge fields 

•  Proca theory for massive photons 

•  non-local formulation      (Dvali 2006) 

    Stueckelberg trick: 

   we add one field and we gain a gauge symmetry 
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If we choose the unitary gauge  φ=0 we get back to the original 
formulation of Proca theory (and loose the gauge sym because of 
gauge fixing). 

Instead, keep the gauge sym explicit and integrate out φ using its 
own equation of motion: 

'(x) = �m�⇤�1(@µAµ)



  we have explicit gauge invariance for the massive theory, 
   at the price non-locality 

•  a sort of duality between explicit gauge-invariance and 
explicit locality 

•  we can fix the gauge                        and the non-local term 
disappears (and we are back to Proca eqs.)   

•  with hindsight, the Stueckelberg trick was not needed 

Substituting in the eq of motion for  Aν :   
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      possible implementations of this idea in GR 
     in QED, we found that a massive deformation of the theory is 

obtained replacing 

•  for gravity, a first guess for a massive deformation of GR could 
be 

    however this is not correct since  

    We would lose energy-momentum conservation.  

(Arkani-Hamed, Dimopoulos, Dvali and Gabadadze 2002) 



•   to preserve energy-momentum conservation: 

  however, instabilities in the cosmological evolution 

•    

     stable cosmological evolution! 
•  last twist 

Gµ⌫ �m2(⇤�1Gµ⌫)
T = 8⇡GTµ⌫

(Jaccard,MM, 
 Mitsou, 2013) 

(Foffa,MM, 
Mitsou,  2013) 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫ (MM 2013) 
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•  So, we interpret our non-local eqs as a classical, effective 
equation, derived from a more fundamental local theory by a 
classical or quantum averaging  

•  any problem of quantum vacuum stability can only be 
addressed in this fundamental theory 

•  the theory 
    could be the truncation of the correct effective theory  

•  the theory 
    could be an example of resummation 

•  our general question: which effective nonlocal theories give a 
meaningful cosmology? 
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Absence of vDVZ discontinuity and of  
a strong coupling regime 

•  write the eqs of motion of the non-local theory in spherical 
symmetry: 

•  for mr <<1: low-mass expansion 

•  for r>>rS: Newtonian limit  (perturbation over Minowski) 

•  match the solutions for rS<< r << m-1 (this fixes all coefficients) 

A. Kehagias and MM 2014 

ds2 = �A(r)dt2 +B(r)dr2 + r2(d✓2 + sin2 ✓ d�2)



•  result: for r>>rs 

     the limit                is smooth ! 

By comparison,  in massive gravity the same computation gives 
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Cosmological consequences.  

•   consider  

     define 

     NB: auxiliary non-dynamical fields! U=0 if R=0. It is not the 
same as a scalar-tensor theory 

•  in FRW we have 3 variables:  H(t),   U(t),   W(t)=H^2(t)S(t).   

     define     x=ln a(t),          h(x)=H(x)/H0 , 
                   γ=(m/3H0)2         ζ(x)=h'(x)/h(x) 
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•  there is an effective DE term, with 

•  define wDE from 

•   the model has the same number of parameters as ΛCDM, with   
ΩΛ ↔ γ. 
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•  results:  

•  Fixing γ = 0.0089.. (m=0.28 H0) we reproduce  ΩDE=0.68 
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•  having fixed γ we get a pure prediction for the EOS: 

 on the phantom side !  general consequence of 

 together with ρ>0 and  dρ/dt>0 

The RT model 

gives  w0= -1.04,   wa=-0.02 

0 5 10 15 20
-1.20

-1.15

-1.10

-1.05

-1.00

z

w D
EHzL

fit  w(a)=w0+(1-a) wa  

 in the region 0< z <1.6 

w0= -1.14,   wa=0.08  

warning. This is not wCDM !!! 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫



Cosmological perturbations 

•  well-behaved? 

•  consistent with data? 

•  Comparison with  ΛCDM 

Y. Dirian, S. Foffa, N. Khosravi, M. Kunz, MM 
                                                            1403.6068 



       An aside: the Deser-Woodard non-local model 
  with phenomenological motivations similar to ours, has been 

proposed a model of the form 

      much activity on ``reconstruction" of f(R): 

•   not predictive at the background level: chosen to mimic ΛCDM 
•  by comparison, our model is 
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   after fixing the background evolution in this way, one can 
comoute cosmological perturbations in the Deser-Woodard 
model, and compare with data 

Deser-Woodard model  
ruled out at the 8σ level 
 by structure formation 

how our model performs?? 

Dodelson and Park 2013 
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•  the perturbations are well-behaved and differ from 
ΛCDM at a few percent level 

 = [1 + µ(a; k)] GR

 � � = [1 + ⌃(a; k)]( � �)GR
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•  deviations at z=0.5 of order 4% 

•  consistent with data: CFHTLenS gives ΔΨ/Ψ=0.05±0.25 
                                                                   (Simpson et al 1212.3339) 
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•  linear power spectrum 
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•  CMB data from the Planck 2013 data release,  type-Ia 
supernovae  from JLA and BAO data from BOSS 

•   we modified the CLASS code and use Montepython MCMC 

•  we vary 
    In ΛCDM, ΩΛ is a derived parameter, fixed by the flatness 

condition. Similarly, in our model the mass parameter m2 is a 
derived parameter, fixed again from Ωtot=1 

     we have the same number of free parameters as in ΛCDM 

Dirian, Foffa, Kunz, MM, Pettorino, 1411.7692 

!b = ⌦bh
2
0, !c = ⌦ch

2
0, H0, As, ns, zre

Boltzmann code analysis and comparison with data 



•  Results 
Param ⇤CDM gµ⌫⇤�1R R⇤�2R

100 !b 2.201+0.028
�0.029 2.204+0.028

�0.03 2.207+0.029
�0.029

!c 0.1194+0.0027
�0.0026 0.1195+0.0026

�0.0028 0.1191+0.0027
�0.0028

H0 67.56+1.2
�1.3 68.95+1.3

�1.3 71.67+1.5
�1.5

10

9As 2.193+0.052
�0.06 2.194+0.048

�0.062 2.198+0.053
�0.059

ns 0.9625+0.0072
�0.0074 0.9622+0.007

�0.0081 0.9628+0.0074
�0.0073

zre 11.1+1.1
�1.1 11.1+1.1

�1.2 11.16+1.2
�1.1

�2
min 9801.7 9801.3 9800.1

Table 1: Planck CMB data only.

Param ⇤CDM gµ⌫⇤�1R R⇤�2R

100 !b 2.215+0.025
�0.025 2.207+0.024

�0.025 2.197+0.024
�0.025

!c 0.1175+0.0015
�0.0014 0.1188+0.0014

�0.0014 0.1204+0.0014
�0.0013

H0 68.43+0.61
�0.69 69.3+0.68

�0.66 70.94+0.74
�0.7

109As 2.199+0.055
�0.062 2.196+0.052

�0.065 2.192+0.051
�0.061

ns 0.9668+0.0055
�0.0054 0.9636+0.0052

�0.0055 0.9599+0.0052
�0.0051

zre 11.33+1.1
�1.1 11.18+1.1

�1.2 11.00+1.1
�1.2

�2
min 10485.5 10485.0 10488.7

Planck+JLA+BAO 



The RT model works perfectly well 

(visually similar plot for ΛCDM) 

The RboxR model has a slight 
 (2σ) tension between CMB and SN  



excellent agreement with  
local H0 measurements.  

Latest revised value after correcting 
for star formation bias 
H0 =70.6 ± 2.6 
(Rigault et al 1412.6501) 

using Planck+JLA+BAO 



LCDM and RT model almost indistinguishable 
RboxR (blue dot-dashed) lower at low multipoles 



Conclusions 
•  we have an interesting IR modification of GR 
•  at the phenomenological level, it works very well 

–  solar system tests OK 
–   generates dynamically a dark energy   
–   cosmological perturbations work well  
–   passes tests of structure formation  
–   comparison with CMB,SNe,BAO with modified Boltzmann 

code ok 
–   higher value of H0 

It is the only existing model, with the same number of 
parameters as ΛCDM, which is competitive with ΛCDM from 
the point of view of fitting the data 



•  sufficiently close to ΛCDM to be consistent with existing data, 
    but distinctive prediction that can be clearly tested in the near 

future 

–   phantom DE eq of state: w(0)= - 1.14 (RboxR)  (or -1.04 RT)  +  a 
full prediction for w(z) 

•  DES           Δw=0.03 
•  EUCLID    Δw=0.01 

–    linear structure formation 

•  Forecast for EUCLID, Δµ=0.01 

–   non-linear structure formation: 10% more massive halos 

–   lensing: deviations at a few % 

µ(a) = µsas ! µs = 0.09, s = 2

Barreira, Li, Hellwing, Baugh, Pascoli 2014 



For the future 

•  At the phenomenological level: comparison with the 
more accurate data expected in the near future 
 (at least, a useful model against which compare ΛCDM)  

•  At the fundamental level: understand the origin of the 
non-local term (with the advantage that we now know 
what we should be looking for) 



Thank you! 



Degrees of freedom 

•  define 
•   the eqs. 
     do not describe radiative  d.o.f ! 

    The homogeneous solution is fixed by the definition of i.e. by 
the def of the non-local theory. 

    It is not a free Klein-Gordon field ! 
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•  linearize the eqs of motion. Scalar sector: 

            Φ and Ψ remain non-radiative! 
In contrast, in massive gravity with FP mass term 
and with generic mass there is a                in the action (ghost)    

   U and S are non-radiative despite the KG operator. 
          No radiative d.o.f. in the scalar sector ! 
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•  we have           directly in the EoM (rather than in the solution). 
This EoM cannot come from the variation of a Lagrangian. E.g.   

•  we can repalce                       after the variation, as a formal trick 
to get the EoM from a Lagrangian.  

    However, any connection to the QFT described by this 
Lagrangian is lost. 
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A technical point 


