The bispectrum of the Cosmic Infrared Background : a new insight on the link between star formation and dark matter

> Aurélie Pénin ACRU/ UKZN

Lacasa, Pénin & Aghanim 2014 Pénin, Lacasa, Aghanim 2014

Star formation within dark matter halos

Behroozi+2012

The global star formation rate

Intense episode of star formation at z~1-2

Behroozi+2012

The infrared point of view

But a background in the IR

Because of confusion :

Extragalactic sources under the limit of detection lead to brightness fluctuations because of the low resolution of the instruments.

CFHT u

HST ACS

SPIRE 250 um

With the courtesy of Sebastien Heinis

The Cosmic Infrared Background

- 8 um to 1.3 mm
- Continuous and integrated field
- Encodes all the processes of galaxy evolution since the decoupling
- Its bulk : $z \sim 1-2$
- Its source : dusty star-forming galaxies = locus of star formation in the Universe
- Spatial structure : image of the density field of dustystar forming galaxies

Dole+2006

Planck 350 um

Evolution in redshift

The Planck Collaboration XXX

The anisotropies of the CIB

Preferential probe of star formation within large scale structure and of its evolution over z ~ 1 - 4

Large scales : linear bias

bias

Fluctuations of the galaxies density field Fluctuations of the dark matter density field

Small scales

depends on the intrinsic properties of galaxies

Baryonic processes occuring within galaxies

Before Planck and Herschel

Spitzer/MIPS 160 um

Lagache+2007

Planck and Herschel I

Planck Early Results XVIII

Amblard+2011

Modelling the power spectrum of CIB anisotropies

$$C_{\ell}^{\lambda} = \int \frac{\mathrm{d}z}{r^2} \frac{\mathrm{d}r}{\mathrm{d}z} a^2(z) \bar{j}_{\lambda}^2(z) P_{\text{gal}}(k, z)$$

Galaxies emissivities
Galaxies emissivities
Galaxies emissivities

Model of evolution of galaxies

Halo model + HOD

spectrum

Ingredients of the 3D power spectrum

- The Halo Model :
 - Halo mass function, 1st and 2nd order biases of the halos, halo density profile (NFW)
- The Halo Occupation Distribution

alpha = slope of the M_{sat} = minimum mass of the halo number of satellites to contain one satellite galaxy $\langle N_{gal} \rangle = \langle N_{cen} \rangle + \langle N_{sat} \rangle$ 100.0 Total Central Satellite 10.0 < N90|> 1.0 Number of central Number of satellite galaxies galaxies 0.1 10¹² 10¹³ 10¹⁴ 10¹⁵ 10¹⁶ $M_{min} = minimum mass of the$ Halo mass (M_a) halo to contain a central galaxy

 $P_{\rm gg}(k,z) = P_{\rm gg}^{\rm clus}(k,z) + P_{\rm gg}^{\rm shot}(k,z)$ Shot noise Clustering

$$P_{\rm gg}(k,z) = P_{\rm gg}^{\rm clus}(k,z) + P_{\rm gg}^{\rm shot}(k,z)$$

$$P_{\rm gg}^{\rm clus}(k,z) = P_{\rm 1h}(k,z) + P_{\rm 2h}(k,z)$$

 $P_{\rm gg}(k,z) = P_{\rm gg}^{\rm clus}(k,z) + P_{\rm gg}^{\rm shot}(k,z)$

 $P_{\rm gg}(k,z) = P_{\rm gg}^{\rm clus}(k,z) + P_{\rm gg}^{\rm shot}(k,z)$

 $P_{\rm gg}^{\rm clus}(k,z) = P_{\rm 1h}(k,z) - P_{\rm 2h}(k,z)$

Constraining HOD parameters with the power spectrum only

Degeneracy induced by 2-point correlation function/power spectra studies

Pénin+2012a

Constraining the evolution of galaxies with power spectra only

Pénin+2012a

Power spectra alone cannot constrain the evolution of galaxies

 $C_{\ell}^{\lambda} = \int rac{\mathrm{d}z}{r^2} rac{\mathrm{d}r}{\mathrm{d}z} a^2(z) ar{j}_{\lambda}^2(z) P_{\mathrm{gal}}(k,z)$

Integration over the redshift

Clustering at higher orders

- Galaxy distribution : non-Gaussian
- Additional information is contained in high order moments

Power spectrum

- 2-point correlation function
- Probability that 2 galaxies are separated by a distance d

Measures the power of fluctuations

Bispectrum

- 3-point correlation function
- Probability that 3 galaxies are separated by distances d₁, d₂, d₃

- Depends on the configuration of the triangle
- Tool to measure non-Gaussianity

Displaying a bispectrum

Squeezed

The bispectrum of the CIB

- CIB anisotropies : non-Gaussian
- Additional information : better contraints on models
- CIB : a foreground to the CMB
 - Knowledge of the non-Gaussianity of the CIB is required to determine that of the CMB
- Prescription : Lacasa+2012
- Measurements :
 - The Planck Collaboration XXX
 - 850 um, 4000 deg²

The Planck Collaboration XXX

Modelling the bispectrum of the CIB anisotropies

$$C_{\ell}^{\lambda} = \int \frac{dz}{r^2} \frac{dr}{dz} a^2(z) \bar{j}_{\lambda}^2(z) P_{\text{gal}}(k, z)$$

$$b_{\ell_1 \ell_2 \ell_3}^{\lambda} = \int \frac{dz}{r^4} \frac{dr}{dz} a^3(z) \bar{j}_{\lambda}^3(z) B_{\text{gal}}(k_1, k_2, k_3, z)$$

Galaxies emissivities
Model of evolution of galaxies
Halo model + HOD

 $B_{
m gal}(k_{123},z)=B_{
m gal}^{
m clus}(k_{123},z)+B_{
m gal}^{shot}(k_{123},z)$

$$B_{
m gal}(k_{123},z)=B_{
m gal}^{
m clus}(k_{123},z)+B_{
m gal}^{shot}(k_{123},z)$$

$$B_{
m gal}^{
m clus}(k_{123},z) = B_{
m gal}^{
m 1h}(k_{123},z) + B_{
m gal}^{
m 2h}(k_{123},z) + B_{
m gal}^{
m 3h}(k_{123},z)$$

 $B_{
m gal}(k_{123},z)=B_{
m gal}^{
m clus}(k_{123},z)+B_{
m gal}^{shot}(k_{123},z)$

 $B_{\mathrm{gal}}^{\mathrm{clus}}(k_{123},z) = B_{\mathrm{gal}}^{\mathrm{1h}}(k_{123},z) - B_{\mathrm{gal}}^{\mathrm{2h}}(k_{123},z) + B_{\mathrm{gal}}^{\mathrm{3h}}(k_{123},z)$

 $B_{
m gal}(k_{123},z) = B_{
m gal}^{
m clus}(k_{123},z) + B_{
m gal}^{shot}(k_{123},z)$

 $B_{\mathrm{gal}}^{\mathrm{clus}}(k_{123},z) = B_{\mathrm{gal}}^{\mathrm{1h}}(k_{123},z) + B_{\mathrm{gal}}^{\mathrm{2h}}(k_{123},z) - B_{\mathrm{gal}}^{\mathrm{3h}}(k_{123},z)$

 $B_{
m gal}(k_{123},z) = B_{
m gal}^{
m clus}(k_{123},z) + B_{
m gal}^{shot}(k_{123},z)$

 $B_{\rm gal}^{
m clus}(k_{123},z) = B_{\rm gal}^{
m 1h}(k_{123},z) + B_{\rm gal}^{
m 2h}(k_{123},z) + B_{\rm gal}^{
m 3h}(k_{123},z)$

$$B_{
m gal}(k_{123},z)=B_{
m gal}^{
m clus}(k_{123},z)+B_{
m gal}^{shot}(k_{123},z)$$

$$B_{
m gal}^{
m clus}(k_{123},z) = B_{
m gal}^{
m 1h}(k_{123},z) + B_{
m gal}^{
m 2h}(k_{123},z) + B_{
m gal}^{
m 3h}(k_{123},z)$$

Models of evolution of galaxies

- 3 models of evolution of galaxies
 - Negrello+2007 : semi-analytical (Model1)
 - Béthermin+2011 : parametric luminosity function (Model2)
 - Béthermin+2012 : split between main sequence/starbursts (Model3)

Predictions of the bispectrum of CIB anisotropies

Degeneracy between the model of evolution of galaxies & HOD parameters For each wavelength and for each model of galaxy

Fit of the HOD parameters

Power spectrum Planck Early Papers

Bispectrum

Variations of the bispectrum with the model of galaxies

350 um 850 GHz

Variations depend on the scale : factor 5 at 1 ~ 300

Power spectrum + bispectrum Constrain models of evolution of galaxies

Constraining HOD parameters by combining power spectrum and bispectrum

Comparison with measurements

The main assumption

$$C_{\ell}^{\lambda} = \int \frac{\mathrm{d}z}{r^2} \frac{\mathrm{d}r}{\mathrm{d}z} a^2(z) \bar{j}_{\lambda}^2(z) P_{\mathrm{gal}}(k, z)$$
$$b_{\ell_1 \ell_2 \ell_3}^{\lambda} = \int \frac{\mathrm{d}z}{r^4} \frac{\mathrm{d}r}{\mathrm{d}z} a^3(z) \bar{j}_{\lambda}^3(z) B_{\mathrm{gal}}(k_1, k_2, k_3, z)$$

No dependence of the galaxy luminosity on the halo mass : All galaxies have the same luminosity

Caveats : Unrealistic : in more massive halos galaxies are more massive and more luminous Interpretation : overabundance of satellite halos No simultaneous fit of measurements at several wavelengths

The Luminosity - Halo mass relation

 $L_{\rm IR}(M_h) \propto \frac{M_h}{\sqrt{2\pi\sigma_{L_{\rm IR}/M_h}^2}} \exp\left[-\frac{(\log_{10}M_h - \log_{10}M_{\rm eff})^2}{2\sigma_{L_{\rm IR}/M_h}^2}\right]$

Application to the latest measurements

A new insight on dusty star-forming galaxies

- Most efficient halo mass for galaxies generating the CIB
 - \circ log M_{halo} = 12.6
- SFR density up to $z\sim 2.5$
- CIB source : main sequence galaxies and not mergers

The Planck Collaboration XXX

CIB x CMB Lensing

- CMB lensing : CMB photons are deflected by gravitational potentials before reaching us
- Probe of large scale structure at 1 < z < 3
- Used their best fits
- Excellent agreement

The bispectrum

Best fits parameters coming from Planck power spectra

550 and 850 um : remarkable agreement 1380 um : less remarkable

A work in progress

- Carry best fits of bispectra measurements with this model
- Constrain the SFRD at z > 2.5?
- Constrain the redshift evolution of the effective mass?
- Best fits consistent with those coming from the power spectrum?
- Known limitation : the locality and determinism of the bias

Conclusion & Perspectives

- CIB anisotropies : preferential probe of star formation within large scale structures at the peak of the Universe SFR
- New insight on the relation between galaxies and dark matter : the galaxy bias
- New insight on the relation between star formation and dark matter
- Complete modelling of the CIB anisotropies
- Main uncertainties : SED
- Requires new measurements of SEDs at high redshift (z > 4)

