The Radio Astronomy Technology (RAT) Centre at the Durban University of Technology

STRUCTURE OF THE PRESENTATION

1. Overview.

- 2. So what are we trying to detect?
- 3. Single dish vs interferometer
- 4. Indlebe Radio Telescope.
- 5. Indlebe Enkulu Radio Telescope.
- 6. Phased Experimental Demonstrator (PED-2)
- 7. Multi Frequency Interferometer Telescope for Radio Astronomy (MITRA).
- 8. The SKA.

<u>Overview</u>

- In 2006 a decision was made to build a small radio telescope that could provide a real world platform for student project work.
- An objective was to be part of IYA 2009 and the result was the Indlebe Radio Telescope that saw first light on 28 July 2008.
- Contact with the SKA SA Project Office followed and this resulted in students starting their work integrated learning at HartRAO in 2009.
- The centre now has four radio telescope instruments at various stages of completion.

So what are we trying to detect?

EM radiation from a source can be produced by thermal or non-thermal mechanisms.

Thermal -:

- A continuous spectrum (noise) related to the temperature of the object (blackbody radiation)
- Discrete absorption or emission spectra (e.g. hydrogen at 1420 MHz, λ = 21 cm)

Non-thermal-:

 Synchrotron radiation (high energy particles spiralling through a magnetic field)

Blackbody radiation (thermal noise)

- A blackbody with a temperature higher than 0 K emits some energy at all wavelengths.
- A blackbody at higher temperature emits more energy at all wavelengths than a cooler one.
- The higher the temperature, the higher the frequency at which the maximum energy is emitted.

- As temp increases, energy (Brightness) increases
- As temp increases, frequency of radiation peak increases

THE ELECTROMAGNETIC SPECTRUM

Concept of equivalent noise temperature

Components and systems that generate noise (as long as it is random) can be characterised by saying they have an equivalent noise temperature T_e where

$$T_e = \frac{P_n}{k\Delta v}$$

Single dish vs Interferometer

It's all about sensitivity and resolution (size does count!) GBT, West Virginia USA 100 m diameter 0,1-116 GHz

Jodie Foster (Contact)

VLA, New Mexico USA 27×25 m diameter 75-50 GHz

Point Source and a Single Dish

• An interferometer measures coherence in the electric field between pairs of points (baselines).

• Because of the geometric path difference, the incoming wavefront arrives at each antenna at a different phase (which varies with movement).

A Simple Interferometer

$$P_{2} = e^{-(\phi \pi R / \lambda)^{2}} \cos^{2}\left(\frac{\psi}{2}\right)$$

Note improved resolution!

However, there is a small problem and.....

Consider an average digital watch which loses 1 s per day:

Stability =
$$\frac{1}{24 \times 60 \times 60}$$
 = 1,16 × 10⁻⁵ over 1 day

To maintain phase coherence of 10° between 2 clocks (oscillators) at 1 GHz for 100 s you require:

Our GPS Disciplined Rubidium Frequency Standard

(Allan variance = $2,8 \times 10^{-13}$)

Indlebe Radio Telescope

- A transit telescope using a 5 m diameter parabolic reflector.
- Constructed by students, constructed from 8 petals bolted together on a very light steel frame.
- Operates at the 21 cm hydrogen line (1420 MHz).
- Receiver equivalent noise temperature (including feed losses) T_e =90 K.
- Receiver bandwidth = 80 MHz.
- Elevation control only approximately 26° either side of the zenith.
- Fully operational but not optimal.

The "in-door" radio telescope

D

Prime focus F/D ratio = 0.5 D=5m, F =2,5 m Beamwidth=3° VSWR< 2 G=35 dB (3162)

$$T_e = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1G_2} + \dots$$

LNA as close to feed as possible (1 dB loss on connector adds 75 K to T_e !)

RFA, BPF and down-converter (original)

RF shielded enclosure!

— Look familiar?

Sagittarius A Centaurus A Centre of Milky Way 26000 Iy Radio Galaxy 14 Mly

Vela X Supernova remnant 1630 ly

DUT DURBAN UNIVERSITY OF TECHNOLOGY

Vela X, Centaurus A, Sagittarius A

Mini Sun's!

So what's a Jansky (Jy)?

Flux density S is measured in Jy, where 1 Jy = 1×10^{-26} W/m²/Hz.

Consider a cellphone transmitting isotropically (equally in all directions) on the moon.

Transmit Power = 0.5 W Channel bandwidth (Δv) =12,5 kHz Distance to earth = 380×10³ km

$$S_{cellphone} = \frac{P_t}{4\pi r^2 \Delta v} = \frac{0.5}{4\pi \times (380 \times 10^6)^2 \times 12 \times 10^3}$$
$$= 2.3 \times 10^{-23} \text{ W/m}^2/\text{Hz}$$
$$= 2300 \text{ Jy}$$

So a cellphone on the Moon appears 1000 Jy stronger than Sag.A!

74°C

DUT DURBAN UNIVERSITY OF TECHNOLOGY

Thermo electric coolers (Peltier coolers)

DURBAN UNIVERSITY OF TECHNOLOGY

Digital PID Controller

×

Students supposed to be in lectures!

Indlebe Enkulu Radio Telescope

- Also operating at the hydrogen line frequency this telescope consists of 16 quad loop Yagi antennas, configured in a 4×4 array (BW = 4°)
- Located at Monteseel 45 km from Durban.
- Equivalent Noise Temperature (feed losses not included) $T_e = 54 \text{ K}$
- The intention is to implement a simple 2 element interferometer with Indlebe.

SKA supported students starting their work integrated learning (WIL)

Control room

Phasing harness (Phased Array)

Local Oscillator Synthesizer

Receiver front-end

Complete Array - 16 Quad-Loop Yagi antennas

 \sim

New Indlebe Enkulu Radio Telescope

<u>Phased Experimental Demonstrator</u> (PED-2)

- Originally built as a pre-curser to KAT 7, it was decommissioned in 2011 and the hardware split between DUT and UCT.
- The DUT array consists of two 2,6 m parabolic reflectors operating at the hydrogen line.
- The array is fully steerable.
- The antennas have been completely refurbished.
- Uses a digital back-end.

SDR Digital back-end

Software Defined Radio Astronomy

Correlator output

First Light 11 July 2014

<u>Multi Frequency Interferometer Telescope</u> <u>for Radio Astronomy (MITRA)</u>

- MITRA is a joint venture between the University of Mauritius (UoM) and DUT.
- Initially it will consist of arrays of 16 LPDA's located in each country with the long term goal of doing VLBI on a 2400 km baseline.
- Operating frequency is 200 MHz to 800 MHz.

MITRA Back-end

DURBAN UNIVERSITY OF TECHNOLOGY

DURBAN UNIVERSITY OF TECHNOLOGY

A SA

MITRA walk-by test 04 November 2014

SQUARE KILOMETRE ARRAY

- International consortium with a plan to build a radio telescope with a collecting area of 1 square kilometre.
- Most of this to be built in South Africa with some in Australia and other African countries.
- Getting to the SKA requires several precursors to prove that it will work:
 - Phased Experimental Demonstrator (2005).
 - eXperimental Development Model (2007).
 - Karoo Array Telescope (2010).
 - MeerKAT (under construction, complete in 2017).
 - Square Kilometre Array (2024).

<u>XDM</u>

15m diameter Solid fibreglass dish Fully steerable First light in July 2007

KAT 7Seven 12m diameter dishesBaseline up to 185mSame construction as XDM

MeerKAT

64 Dishes 13,5m diameter Maximum baseline of 20km First light in 2017

SQUARE KILOMETRE ARRAY

- Will eventually consist of 2400 antennas.
- Construction to start in 2017 (phase 1).
- Completion is scheduled to be in 2024.
- Some facts:
 - The data collected by the SKA in a single day would take nearly 2 million years to play back on an iPod.
 - The SKA central computer will have the processing power of about 100 million PCs.
 - The dishes of the SKA will produce 10 times the global internet traffic.
 - The SKA will use enough optical fibre to wrap around the Earth twice.

26 m dish at HartRAO

