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Big Bang

0.3 -0.8 Gyr

we know the initial conditions
of structure formation in the

universe
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Big Bang
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0.3 -0.8 Gyr

~ IheTight from galaxies eventually 10nizes
bulk of the hydrogen in the universe, which
lives-between them







We would like to see

this happen!









» Hyperfine transition = weak => avoid saturation

(translucent)
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- We can see if those
simulations are right!




- How did this lead to the large scale galaxy structure
seen today?







What kinds of stars and galaxies reionized the
neutral IGM?

- How did this lead to the large scale galaxy structure
seen today?




telescopes

= But we can still see their-effects-on hydrogen, and learn

about star formation within them




- How d1d this lead to the large scale galaxy structure
seen today?
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= Problem: Strong foregrounds

= Solution: Delay Transtorm Isolation




South Africa

Green Bank



= Problem: Strong foregrounds

= Solution: Delay Transtorm Isolation
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is optimal for the power spectrum
measurement
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Polarization effects are mitigated by:

sLow intrinsic polarization of sources

 Precision calibration made possible in-maximum redundancy array
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In order to gain the
resolution of one large
telescope without having to
build a single large dish, we
can use aperture synthesis.

This is done by
sequentially combining
pairs of signals from a
“virtual antenna”. If we
break the aperture into N
sub-apertures, there will be
N(N-1)/2 pairs to combine.
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U14, 1n prep, will place upper limits on the observed (J
power spectrum.

= HERA!




Advanced Analysis Techniques for Transit
Arrays

with Application to PAPER and HERA

James Aguirre

University of Pennsylvania
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The Fundamental Visibility Equation

Our most general form of the visibility which we wrote

- aown was
Vv,u,v,w) =
dldm

A, 1, m)S(v, 1, m)e lultvmtwy1-12—m?
[ A tmstutm _aun_

Here A is the primary beam of the antenna pair, S is
the pattern of emission on the sky, v is the frequency

of observation.
For transit arrays, we will find it easier to think about
re-writing this in the celestial coordinate system.
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New Coordinate System

We define a coordinate system where 2 points along
ihe earth’s rotation axis, and z and y lie in the

quatorial plane. We can choose z to point in the
irection of RA=0. (0, ¢) will represent the usual
spherical coordinates. We are taking the sky as fixed,
and the positions of the primary beam and the
baseline vector move with respect to it as a function of
t.
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e recall that we can write a unit vector on the sphere
S

S = cos ¢sin 0 + sin ¢ sin 0y + cos 6z

Then in this coordinate system, the baseline vector will
be

b = by cos(wet)T + by sin(wet)y + b2

where w, Is the angular velocity of the Earth’s rotation,
and ¢ = 0 corresponds to the array pointed at RA =0
(that is, LST=0).
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Direction Cosines in Terms of (0, ¢)

The direction cosines are defined as

sin(f) = 1* + m?

tan ¢ = ?

From this it is clear that we can write

ul—l—vm—l—wn:ul+vm—|—w\/1—12—m2:

by b b
Xcosqbsine—l— Xysin¢sin9—|— XCOS@
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ow, we notice that £ = 1, soO

b b b

chosgbsin@—l—Xysingbsinﬁ—l—fcosﬁ =
b
()\O> s = b-sv/c
And finally
dldm

— sin 0dAdo = dS

V1—12—m?2
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IS now gives us, explicitly

27T 7
(v,t;b) = / / Av,t,0,6)S(v; 0, ¢)e ™/ sin(0)dOd¢
0o Jo
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Moving the Primary Beam

We are now almost in a position to evaluate the
visibility integral (numerically) for any sky, frequency,
~and time, except that we need to account for how the
~ primary beam moves as the earth rotates. We will
‘imply write it as

At) = A(Q — Q(t))

where Qu(t) = (6y, wet) Where 6y Is the co-latitude of the
array and w.t is the LST, i.e., Qy(t) is the local zenith of
the array (where it is looking at time t).

You will notice that this is a kind of shift of the function,
and indeed we can use a sophisticated form of the
shift theorem (for spherical harmonics) to evaluate
A(t) In practice.
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The Beam A((Q)

Mollweide view

S s
5.54626e-05 1
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The Fringe Refe /<]

Mollweide view
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The Fringe Im[e—"P%"/<]

Mollweide view
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A(Q) Re[e—ib-§u/c]

Mollweide view

I B
-0.991237 0.984684
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The Time-Frequency Visibility

Let’s write the visibility for a single baseline down in a

lompact form as
(v,t; b) / A, Q2 — Qo(£)S(v, Q)e P52 40

What does this look like as a function of » and ¢ for a
given baseline?
Let’s consider a point source

S(v,Q) = S (Vﬁo) h 5(9 — Q)
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Magnitude Phase

10t 1 10} .

51 - 5t -
w i
< £

) OF i Of ]
£ E
= i

-5 - -5k i

—-10} 1 =10} .

100 120 140 160 180 200 100 120 140 160 180 200
Frequency (MHz) Frequency (MHz)

SKA School —p. 14



— Real ||
— Imag

One Point Source

10

—10

1.0

0.5f

<
o

—0.5}
—1.0f

(Af) spnyijdwy

Time (hrs)

SKA School —p. 15



One Point Source
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Two Point Sources
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Two Point Sources
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Two Point Sources
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hat is the period of the oscillations in time and
requency?
et’s consider the following operations:

FlV (v, t)|(r,t) = /V(V, t)e W Tdy

FlV(,t))(v. f) = / Vv t)e-itf dt

SKA School - p. 20



ince the oscillatory part of V (v, ) is

e—zb(t)-sg

t fixed time the maximum rate at which the fringe will

oscillate is
b

Tmar = — seconds

which corresponds to an oscillation every

2T
—— Hz
b

SKA School - p. 21



imilarly, at fixed frequency the maximum rate at which
he fringe will oscillate depends on the rate at which b
s changing (which depends on the Earth’s rotation
ate):

b
fma,a:: ’ ’Vwe Hz
c 27

which corresponds to an oscillation every

1
b
( ‘ ‘ U (;6 ) seconds
C T
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Delay/Delay-Rate Transform
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Pober et al 2013
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is optimal for the power spectrum
measurement







Interferometry without lmagmg
* The Delay: Transform







Delay/Delay-Rate Transform
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South Africa
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errors are much smaller than the k space bins




Verified flux scale against nearby sources in
declination

Jacobs et al 2013 Ap] 776 108
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proven technology
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3 meters
14 meters

Useful frequency range increased down to 70 MHz (z ~ 20)




0.1 \2 V= Extreme X-ray Heating «s++++
\(\ Cold Dark Matter Annihilation e
Warm Dark Matter « -

7 8 9 10 11 12 13 14 15 16 17 18 19
Redshift

Mesinger et al 2013










now hiring grad students
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