Fourier Transforms in Radio Astronomy

Kavilan Moodley, UKZN

Slides taken from N Gupta's lectures: SKA School 2013

van-Cittert Zernike theorem

Wednesday, December 10, 2014

van-Cittert Zernike theorem

The complex correlation at P₁ and P₂ for zero time offset:

$$< E_{1}(l, m, t) * E_{2}(l, m, t) > = < \mathbb{E}(l, m, t - \frac{R_{1}}{c}) * \mathbb{E}(l, m, t - \frac{R_{2}}{c}) > \frac{\exp(-j2\pi\nu(t - \frac{R_{1}}{c}))}{R_{1}} \frac{\exp(-j2\pi\nu(t - \frac{R_{2}}{c}))}{R_{2}}$$

$$= < \mathbb{E}(l, m, t) * \mathbb{E}^{*}(l, m, t - \frac{R_{2} - R_{1}}{c}) > \frac{\exp[j2\pi\nu(R_{1} - R_{2})/c]]}{R_{1}R_{2}}$$

$$= < \mathbb{E}(l, m, t) * \mathbb{E}^{*}(l, m, t - \frac{R_{2} - R_{1}}{c}) > \frac{\exp[j2\pi\nu(R_{1} - R_{2})/c]]}{R_{1}R_{2}}$$

$$= \frac{I(l, m)}{I(l, m)}$$

$$V_{12}(u, v, 0) = \int \frac{I(l, m)\exp[j2\pi\nu(R_{1} - R_{2})/c]}{R_{1}R_{2}} ds$$

$$V_{12}(u, v, 0) = \int \int I(l, m)e^{j2\pi\nu(ul+vm)} dldm$$

$$V(u, v) = \int \int I(l, m)e^{j2\pi(ul+vm)} dldm$$

(Thompson, Moran & Swenson)

I(*l*,*m*) is real; V(*u*,*v*) is Hermitian.

Hermitian function

 $f(x) = f^*(-x)$ f(x) = E(x) + i O(x)

Real part is even; Imag part is odd.

Since V(u,v) is hermitian we measure only half of the (u,v)-plane and fill the other half with the complex conjugates.

$$\mathbf{V}(u,v) = \mathbf{V}^*(-u,-v)$$

I(*l*,*m*) is real; V(*u*,*v*) is Hermitian.

(*u*,*v*) tracks as ellipses

Figure 2–14. (a) The configuration of the 27 antennas of the VLA. (b) The transfer functions for four declinations with observing durations of $\pm 4^{\rm b}$ for $\delta = 0^{\circ}$ and 45° , $\pm 3^{\rm b}$ for $\delta = -30^{\circ}$, and $\pm 5^{\rm m}$ for the snapshot. [From Napier, Thompson & Ekers (© 1983 IEEE).]

(Thompson, Moran & Swenson)

(*u*,*v*)-plane

(*u*,*v*) tracks as ellipses

Holes correspond to missing information.

(Thompson, Moran & Swenson)

Image reconstruction: phase vs amplitude

Digital images: Quantization

Lim (1990)

Digital images: Pixelization

Lim (1990)

Lim (1990)

Lim (1990)

(Taylor, C. A. & Lipson, H., Optical Transforms, Bell, London 1964)

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

Duck (Amplitude) + Cat (Phase)

Cat (Amplitude) + Duck (Phase)

(Taylor, C. A. & Lipson, H., Optical Transforms, Bell, London 1964)

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

Amplitude: magnitude of the spatial frequency. Phase: it's location.

Image analysis

Lim (1990)

Image reconstruction: a few components required

Lim (1990)

Sampling V(*u*,*v*)

Nyquist rate

Any continuous band-limited signal can be reconstructed if sampled at the Nyquist rate.

Sampling rate = 1/2f

Higher frequency components will be aliased to the lower frequencies in the sampled band.

Sampling V(*u*,*v*)

Under-Sampling: Aliasing

If aliasing is avoided convolution with *sinc* provides exact interpolation of the original function from the samples.

(Thompson, Moran & Swenson)

Fast Fourier Transform: V(*u*, *v*) - I(*l*,*m*)

- Faster.
- Requires data on uniform grid.
- Gridding to resample V(*u*,*v*).

Fast Fourier Transform: Image domain

- Holes correspond to missing information.
- Longest baseline: limit on resolution
- Inner hole: no information on large scales

• Pixel size: $1/(2u_{max})$, $1/(2v_{max})$ i.e. satisfy sampling theorem.

Fast Fourier Transform: Image domain

• Image size: whole primary beam; sources in the side lobe will be aliased back. Solution: make larger image !

(Thompson, Moran & Swenson)

Errors in V(*u*,*v*)

Effect of Amplitude error

(Thomson, Moran & Swenson)

EXAMPLE 1 Data bad over a short period of time

Results for a point source using VLA. 13 x 5min observation over 10 hr. Images shown after editing, calibration and deconvolution.

Taylor et al. lecture (NRAO Synthesis Imaging School 2012)

EXAMPLE 2 Short burst of bad data

Typical effect from one bad antenna

10 deg phase error for one antenna at one time rms 0.49 mJy

20% amplitude error for one antenna at one time rms 0.56 mJy (self-cal)

Taylor et al. lecture (NRAO Synthesis Imaging School 2012)

 $V'(obs) = G_{ij} V(true)$ poor calibration/ -Obsérving set-up baseline-based errors -bad data

•

Diffuse extended emission

Weighting: surface brightness sensitivity
 Masking: deconvolution & flux density

(Flux calculated correctly for cleaned map.)

Emission at various scales

(Konar et al. 2006)

Emission at various scales

Momjian et al. 2003

Summary

- V(u,v) I(l,m)
- Radio interferometer samples V(u, v): fourier transform to get image.
- Fourier transforms also useful in identifying problems.
- Use Flagging, Gridding and Weighting of the visibility to get *appropriate* image.

References and further reading

- **Bracewell**: The Fourier Transform and its applications.
- **Thompson, Moran & Swenson**: Interferometry and Synthesis in Radio Astronomy.
- Synthesis Imaging in Radio Astronomy II: the NRAO lecture series.

END - PART II