Fourier Transforms in Radio Astronomy

Kavilan Moodley, UKZN

Slides taken from N Gupta's lectures: SKA School 2013

van-Cittert Zernike theorem

(Thompson, Moran & Swenson)

van-Cittert Zernike theorem

The complex correlation at P_1 and P_2 for zero time offset:

$$
=\langle E(l, m, t - \frac{R_1}{c}) * \mathbb{E}(l, m, t - \frac{R_2}{c}) > \frac{\exp(-j2\pi\nu(t - \frac{R_1}{c}))}{R_1} - \frac{\exp(-j2\pi\nu(t - \frac{R_2}{c}))}{R_2}
$$
\n
$$
= \langle E(l, m, t) * E^*(l, m, t - \frac{R_2 - R_1}{c}) > \frac{\exp(j2\pi\nu(R_1 - R_2)/c)}{R_1R_2}
$$
\n
$$
\frac{\text{small wt receiver BW} \cdot}{R_1R_2}
$$
\n
$$
V_{12}(u, v, 0) = \int \frac{l(l, m) \exp(j2\pi\nu(R_1 - R_2)/c]}{R_1R_2} ds
$$
\n
$$
V_{12}(u, v, 0) = \int \frac{l(l, m) \exp(j2\pi\nu(R_1 - R_2)/c]}{R_1R_2} ds
$$
\n
$$
V_{12}(u, v, 0) = \int \int l(l, m) e^{j2\pi(\mu t + \nu m)} dt d\mu
$$
\n
$$
V_{12}(u, v, 0) = \int \int l(l, m) e^{j2\pi(\mu t + \nu m)} dt d\mu
$$
\n
$$
V(u, v) = \int \int l(l, m) e^{j2\pi(\mu t + \nu m)} dt d\mu
$$
\n
$$
V(u, v) = \int \int l(l, m) e^{j2\pi(\mu t + \nu m)} dt d\mu
$$
\n
$$
V(u, v) = \int \int l(l, m) e^{j2\pi(\mu t + \nu m)} dt d\mu
$$

(Thompson, Moran & Swenson)

$I(l,m)$ is real; $V(u,v)$ is Hermitian.

Hermitian function

Im $f(x) = f^*(-x)$ $f(x) = E(x) + i O(x)$ Real part is even;

Imag part is odd.

Since V*(u,v)* is hermitian we measure only half of the *(u,v)* plane and fill the other half with the complex conjugates.

$$
V(u,v) = V^*(-u,-v)
$$

$I(l,m)$ is real; $V(u,v)$ is Hermitian.

(*u,v*) tracks as ellipses

Figure 2–14. (a) The configuration of the 27 antennas of the VLA. (b) The transfer functions for four declinations with observing durations of $\pm 4^h$ for $\delta = 0^{\circ}$ and 45° , $\pm 3^h$ for $\delta = -30^{\circ}$, and $\pm 5^$

(Thompson, Moran & Swenson)

(*u,v)* **-plane**

(*u,v*) tracks as ellipses

Holes correspond to missing information.

(Thompson, Moran & Swenson)

Durban-2013

Image reconstruction: phase vs amplitude

Digital images: Quantization

Lim (1990)

Digital images: Pixelization

Lim (1990)

Lim (1990)

Lim (1990)

(Taylor, C. A. & Lipson, H., Optical Transforms, Bell, London 1964)

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

(Taylor, C. A. & Lipson, H., Optical Transforms, Bell, London 1964)

http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

Amplitude: magnitude of the spatial frequency. Phase: it's location.

Image analysis

Lim (1990)

Image reconstruction: a few components required

Lim (1990)

Sampling V(*u,v***)**

Nyquist rate

Any continuous band-limited signal can be reconstructed if sampled at the Nyquist rate.

Sampling rate = $1/2f$

Higher frequency components will be aliased to the lower frequencies in the sampled band.

displayed: one cycle every two pixels. Therefore, any attempt to display higher frequencies will produce

Sampling V(*u,v***)**

Under-Sampling: Aliasing

If aliasing is avoided convolution with *sinc* provides exact interpolation of the original function from the samples.

(Thompson, Moran & Swenson)

Fast Fourier Transform: V(*u, v***) - I(***l,m***)**

- Faster.
- Requires data on uniform grid.
- Gridding to resample V(*u,v*).

Durban-2013

Fast Fourier Transform: Image domain

- Holes correspond to missing information.
- Longest baseline: limit on resolution
- Inner hole: no information on large scales

• Pixel size: $1/(2u_{max})$, $1/(2v_{max})$ i.e. satisfy sampling theorem.

Durban-2013

Fast Fourier Transform: Image domain

• Image size: whole primary beam; sources in the side lobe will be aliased back. Solution: make larger image !

(Thompson, Moran & Swenson)

Errors in V(*u,v***)**

Effect of Amplitude error

(Thomson, Moran & Swenson)

EXAMPLE 1 Data bad over a short period of time

Results for a point source using VLA. 13 x 5min observation over 10 hr. Images shown after editing, calibration and deconvolution.

Taylor et al. lecture (NRAO Synthesis Imaging School 2012)

EXAMPLE 2 Short burst of bad data

Typical effect from one bad antenna

10 deg phase error for one antenna at one time $rms 0.49$ mJy

20% amplitude error for one antenna at one time rms 0.56 mJy (self-cal)

Taylor et al. lecture (NRAO Synthesis Imaging School 2012)

V'(obs) = G*ij* V(true) -Observing set-up -bad data poor calibration/ baseline-based errors

.

Diffuse extended emission

1) Weighting: surface brightness sensitivity 2) Masking: deconvolution & flux density

(Flux calculated correctly for cleaned map.)

(Briggs et al. 1999)

.

Emission at various scales

(Konar et al. 2006)

Emission at various scales

Momjian et al. 2003

Summary

- $V(u,v)$ $\qquad \qquad I(l,m)$
- Radio interferometer samples V(u, v): fourier transform to get image.
- Fourier transforms also useful in identifying problems.
- Use Flagging, Gridding and Weighting of the visibility to get *appropriate* image.

References and further reading

- **Bracewell**: The Fourier Transform and its applications.
- . Synthesis in Radio Astronomy. • **Thompson, Moran & Swenson**: Interferometry and
- **Synthesis Imaging in Radio Astronomy II**: the NRAO lecture series.

END - PART I1