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Electric

- Can be represented entirely by a frequency and amplitude

E = hv

A= C/v




Electromagnetic Spectrum

- Historically started
with what we could see.

- Optical astronomy
many hundreds of years
old now.

- Lots of objects we
could see.




Atmospheric Transmission
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Atmospheric Transmission
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Different technologies

- Optical: started with - Equivalent for radio
single eyepiece, now are bolomoters.

onto CCDs.

- Thermistors: Not coherent (phase preserving)




Different emissions

- Blackbody/Thermal . Continuum/Non-thermal

CosMiC MICROWAVE BACKGROUND SPECTRUM FROM COBE
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Our Galaxy

(At other wavelengths)

Oprtical A. Mellinger Photomosaic Old stars, dust obscuration Molecnlar Hydlrogen 115 GHz Columbia-GIS5
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radio continuum (408 MHz)

atomic hydrogen

s «OP rOgH. =

radio continuum (2.5 GHz)
AT o L

molecular hydrogen;
£ byt =
': —’_.f '};,- :‘ L > :ﬁ' ~;:'_»a
o

infrared

-

mid-infrared

near infrared
5 K e

mui/aogeseudyssdope/diny

optical

v ) ~

& Multiwavelength Milky Way




Lifecycle of Stars in a Galaxy
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History of Radio Astronomy

Ancient Civilizations were birth of
astronomy

Optical Astronomy began with
the telescope (Brahe, Galileo,
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Radio Astronomy really began as an accident, a side effect of
development of military radar in early 20t century, and many of
the drivers of the field, even in more recent years, have hailed from
more of a practical engineering background rather than from a
pure academic training.




Birth from thunderstorms

In 1931, while working at Bell Telephone Laboratories, He built a vertically polarized unidirectional

Jansky was tasked with studying the direction of antenna that was 30m long by 4m high, mounted

arrival of thunderstorm static. on a circular track (a merry-go round, rather than a
telescope). Rot: 20mins; 20.5MHz (14.6m)




Rotating signhal found

Antenna direction
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Fig. 1-4. Record obtained by Jansky on Feb. 24, 1932. Peaks (indicated by
arrows) occurred at 20-min intervals as the antenna beam swept through the plane

of our galaxy. Note that the direction of the peak shifted from nearly south to
southwest in about 2 hr. (After Jansky, 1932.)

Found 3 results:

1. Static from local thunderstorms “Radiations are received any time the

2. Static from thunderstorms in south antenna is directed towards some part of the

3. Steady hiss of unknown origin Milky Way system, the greatest response
being obtained when the antenna points

Repeatable (detected at 10m and 14.6m)  towards the center of the system. “

Credit: Kraus




Need for bigger telescopes

From an engineering standpoint, Jansky recognized that “this star static ... puts a definite
limit upon the signal strength that can be received from a given direction at a given time
and when a receiver is good enough to receive that minimum signal it is a waste of money
to spend any more on improving the receiver.” [ unless you make the beam smaller]

Proposed construction for 30m
parabolic mirror antenna
operating at meter wavelengths
was denied.

Bell Labs moved him on to other
projects.




Grote Reber

Built a 9.5m parabolic reflector telescope (1937).

Assumed the radiation would obey blackbody, and
be stronger at shorter wavelengths.

No detection at 3.3GHz, 910MHz, and detection at
160MHz. (12 degree beam)

U,
& 'i‘."{\a’l‘
Wi

/

/
//

PP AN
TR

S SO

] ¥
" ;
v i

%:;‘QQ,‘ 3 :bl ": X

R T
e - £y
W Lo N

Grote Reber’s dish antenna at Wheaton, lllinois,
in 1938, the prototype of the modern radio tele-

First map of the radio sky as produced by Grote scope.
Reber showing strong sources of radiation in Cas-
siopeia, in Cygnus and in Sagittarius, the center of Results almost not accepted for

the galaxy, the region from which Karl Jansky had publication in the Astrophysical Journal
detected radio emission.




(some) Since Reber

Noone knew the culprit of these sources because we could not locate them accurately
enough for optical follow-up.

Many (bigger) telescopes were built in the next few decades (Leiden at 1.4GHz,
Cambridge, ...)

Manchester: 76m diameter completed in 1957
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Interferometers were needed

1950s: Cambridge One-Mile
telescope

1958: OVRO interferometer
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Credit: Kraus

Radio Telescopes

Reber: “The antenna-receiver combination acts like a bolometer, or
heat-measuring device, in which the radiation resistance of the
antenna measures the equivalent temperature of distant parts of
space to which it is projected by the antenna response pattern”




Different types
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Near vs Far sidelobe presence




Sample Patterns

Antenna patterns are the Fourier Transform of the aperture distribution




Sidelobe Mitigation

Primary Edge Taper

Filling in the sidelobes

---- with absorber
---- without absorber
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Horizontal Sky Offset [arcMin]

Full-Width at Half Maximum (FWHM):
how wide the beam is at the point where
it is 50% sensitive to the sky distribution.
For Gaussian, given by:

FWHM = 2v2In2 0 =~ 2.355 0.

Field of View (FOV): The largest angles
the telescope is sensitive to.

Effective Area/Aperture Efficiency: How
well a telescope collects all the radiation
incident on it. This is related to the

antenna gain by geometry and
wavelength.

Surface accuracy.




Antenna Properties

Sensitivity: How faint an object a
telescope can detect

Resolution: The sharpest size the
telescope can see.

A
06 ~ 1.225

Which is why we end up building really
large structures!!




300 foot GBT telescope

Nov 15, 1988!




300 foot GBT telescope

Nov 16, 1988!




300 foot GBT telescope

Nov 16, 1988!




Interferometry

Resolution proportional to

telescope separation

Allows for high resolution without

building a giant telescope

Differences the atmosphere

inherently (by comparing the
signals from pairs of telescopes
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Interference pattern

Young’s 2-slit experiment

monochromatic
lanar wave
e.qg. a laser)

screen with
two slits

optical
screen

optical screen
(front view)



Interference pattern

e  Combining from 2 telescopes leads to the same sort of pattern

o Need Coherent
detectors

Integrator




Waveforms
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Fringe pattern across the sky (1D)




2D & Fold in primary beam (sensitivity)

Short Baseline Corrugation Long Baseline Corrugation
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Interferometry

Short Baseline Sensitivity Pattern

Resolution proportional to
telescope separation

Allows for high resolution without

building a giant telescope

Differences the atmosphere

inherently (by comparing the
signals from pairs of telescopes

Long Baseline Sensitivity Pattern
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The Fourier Transform

An arbitrarily complex function can be
represented as a sum of very simple
functions (like sines and cosines)

Often used in analysis of audio signals

(Example: these functions are
the ‘fundamentals’ and
‘overtones’ of music theory)
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But what about a Joseph Fourier (1768-1830)

two-dimensional function?
(like an image)

Square wave




The Fourier Transform

An arbitrarily complex function can be
represented as a sum of very simple
functions (like sines and cosines)

Often used in analysis of audio signals
(Example: these functions are

the ‘fundamentals’ and
‘overtones’ of music theory)

But what about a
two-dimensional function?
(like an image)

STILL TRUE!!!




How interferometers “see”




How interferometers “see”
Adding all these ‘ripples’ together

Credit: Leitch
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Produces this image




How interferometers “see”
Adding all these ‘ripples’ together

y

Produces this image




VLA A-configuration VLA A+B+C-configuration

\




“Spatial Modes”

Long baselines
(small scales)

T The whole picture




Advantages

Higher resolution for not as much money

Directly measure Fourier components

Intrinsically stable; only correlated signals are detected
Window functions are precisely calculable

Radically different instrumentation and systematics than beam-swept
experiments

More “easily” calibrated

Dis-advantages

Lower Sensitivity than comparable single dish
No zero-spacing

Minimum spacing you can not recover

More complicated backend electronics.
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I-m on sky

(Lm,n): basis vectors
on the sky for the
source (“directional
cosines of u,v,w”)

(u,v,w): coordinate
system on ground (in
terms of wavelength)

\\ - ;
Correlator

1

Figure 2-7. The (u,v,w) and (I, m,n) right-handed coordinate systems used to ex-
press the interferometer baselines and the source brightness distribution, respectively.




The Interferometric Equation

Viu,v,w) = [ / Ax(l,m)I{l,m) x exp{—2mi[ul - vm + w(v1 - * —=m? - 1)]}

v"l - {? —m*

In practice, you can (usually) approximate the sky as a flat plane, so
the radical is approximately 1.

Viu,v) :[ f | A(l,m)I(l,m) x exp{—2mi[ul + vm]}dl dm.

Antenna Pattern Source lllumination Incomplete Sampling
of Fourier Plane




Dirty Beam Shape and N Antennas

David J. Wilner

Harvard-Smithsonian CfA

12t Synthesis Imaging Workshop
b 2 Anten naS Socorro, June 9, 2010
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Dirty Beam Shape and N Antennas

3 Antennas
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Dirty Beam Shape and N Antennas

4 Antennas




Dirty Beam Shape and N Antennas

5 Antennas
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Dirty Beam Shape and N Antennas

7 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas x 6 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 30 Samples

)
S
S
@
N
o
w
o
—
s
o
Z
=
S
9
a

RA offset (arcsec; J2000)




Dirty Beam Shape and N Antennas

8 Antennas x 60 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 120 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 240 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 480 Samples




Bandwidth




Interferometer Properties

Resolution

Largest Structure

Field of View

Total Number of

Baselines
Sensitivity (of a SINGLE baseline)

2kp \V TsyslTsys2 1 Nigoos = Nant(Nant — 1)

Ointerf — 2

v/ TNap1 napg(Area) . Tleorr TAv




Simple, right?

Geometric Delay Compensation
Phase Switching

Calibration

Shadowing

Mosaicking

Etc...etc....etc....

Noise (mJy/beam) Short baseline

DEC offset (Degrees)

It gets more complicated...




Application: Sunyaev-Zel’dovich Array (SZA)

Built to study clusters of galaxies
via the SZ effect.

Eight 3.5m telescopes

30GHz and 90GHz
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Photo Credit: Leitch




Application: Sunyaev-Zel’dovich Array

&
¥ (arcmin)

N—=S (rnaters)
B

|
th

o]
goo

a

X (aremin)

[v]
E-w {metars}

¥ (arcmin)

|
h

a

¥ [aremin)




Test of Survey on CI0016+0016

Significance long baseline Significance long baseline

* 10 pointing Mosaic in 3-4-3
Hex Pattern

» 4.8 arcminute Separation
* Median rms 0.31mJy/beam

* Bright Radio Source at > 60
sigma

Two Clusters
Detected Significance short baseline

M~1.3x10*"5 M solar
(Hughes et al., 1995, ApJ448:L93)

M~5x10*14 M _solar
(Hughes & Birkinshaw, 1998, ApJ 497:645)
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Y4 D_etection with the SZA

Short-only
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SZA results

e Several Square Degree Survey
* Placed meaningful contraint on og
(rms linear fluctuations
in the mass distribution on scales
of 8 Mpc)
« Tests of Non-Gaussianity
* Detection of Galactic AME
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* 18t cm-wave source counts to mJy
» Solved a tension between previous
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CMB experiments

* Pointed Observations

 Scaling Relations
 Better Estimates of Cluster
Observables/Scaling Relations S e

! degree™?])

log, (AN/dS [mly

* Detailed Imaging of Clusters at 90GHz

« CMB anisotropy measurement
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Possibilities!!!
SZA was pretty small, just think of what you can do with KAT/7 and MeerKAT!

Questions?

Artist's impression of the MEErKAT array
By IBM Research % 2 ®0




Design your own!




Design your own!

Study objects like those. You want to be sensitive to the emission from each
component, be able to separate them, and know the full emission of the

system.
: _ Resolution
Observing frequency: 3-4GHz (synchrotron jets)
Observing time: 8 hours per object
Sensitivity required: 22u Jy/beam Largest Structure

Aperture Efficiency: 0.6, Correlator Efficiency: 0.9
Tsys: 50K

2kBT3y31T3y32 1 . 2]93 S0K x 50K 1 1 Jy

Ointerf = — e e — —e——————————  ————————— = 2.5%10° ———
torf Map1Nap2(Area) n.,..v/TAv /0.6 x 0.6(Area) 0.9v/7Av (Area)VTAv beam

Questions: Area in m”2

1. How far should your antennas be (what resolution do you need)?

2. How many antennas do you need?

3. How big will you make each antenna?

4. Where could you put such an instrument?

Just for comparison, what size optical telescope would you need for resolution?




