
SKA School 2014: Fourier Transforms Lab

In this lab we will use the numpy.fft module (which implements the Fast Fourier Transform 
algorithm) to perform a number of exercises to show the properties of the Fourier transform, and 
see how and why moving from the time (or spatial) domain to the frequency domain is useful. As 
you will see on subsequent days, the Fourier transform plays an essential in radio astronomy. Note 
that it saves a bit of typing to use import numpy.fft as fft to include the FFT routines in your 
programs.

Fourier transforms of 1d functions

We'll begin by looking at how to perform a Fourier transform in python. An example code is 
provided here:

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/1d/exampleFFTs1D_template.py

Run the script to see what it does, and load the script into a text editor to see how it works. You 
should see that it performs the FFT (and inverse FFT) of a delta function and a Gaussian; two 
functions shown in the lecture this morning. All of the action takes place in the makeFFTPlot 
routine – there you can see that fft.fft is used to do the Fourier transform, and fft.ifft 
performs the inverse Fourier transform. Note that when plotting the Fourier transformed image, the 
fft.fftshift routine needs to be used to put the frequency components where we expect to see 
them on the plot (this is just convention; without the shift numpy puts the zero frequency component
at the edges rather than in the centre).

Modify the code to add a function that generates a boxcar signal, and feed that signal into the 
makeFFTPlot routine. If done correctly, the Fourier transform of the boxcar is a sinc function. 
Perhaps experiment with taking Fourier transforms of other signals, and/or change the widths of the 
boxcar or Gaussian signals...

Convolution

Now let's take an image and convolve it with a Gaussian kernel to blur it out. Start with this script:

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/convolution/convolution_template.py

You'll also need to download the image MeerKAT.jpg which is in the same directory on the 
webserver.

The template script loads in the colour MeerKAT image, converts it to grayscale, and then applies 
the ndimage.gaussian_filter routine to blur the image. This is the easy way to blur an image in 
python, but your task is to modify the script to do the convolution using fft.fft2 and fft.ifft2 
instead (the '2' here indicates these routines work in 2d rather than 1d). The code already generates 
the Gaussian kernel you need to do this (since this is a little tricky) – you just need to work out what
to do with the arrays kernel2d and gray to make the blurred image. You can also experiment with 
changing the kernel size: you will probably find that for very large kernels (kernelSize = 80 or 
higher) that your FFT method is faster than ndimage.gaussian_filter.

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/1d/exampleFFTs1D_template.py
http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/convolution/convolution_template.py


Fourier transforms of images

Now let's look at magnitudes and phases. Download the script

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/magsAndPhases/magsAndPhases.py

Running this, you should see it produces three plots: one of the input image (a circle or a box), one 
of the magnitudes (this shows the power on different spatial scales in the image), and one of the 
phases. Experiment with commenting in/out the routines that makes the input array arr, and change
the parameters (location, radius or box dimensions, rotation) to see their effect on the output 
magnitudes and phases after Fourier transforming the image.

Swapping phases and magnitudes

If we look at an image of a face, do the magnitudes or phases contain the most information? Let's 
check this by taking two images of faces, Fourier transform them, swap their magnitudes or phases, 
and then inverse Fourier transform them. Download the script and images from here:

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/phaseSwap/

The script phaseSwap_template.py already contains routines to load and save the colour images 
from the images/ directory as gray scale (look in the previous magsAndPhases.py script for how to
use these). Your task is to write the code that calculates the magnitudes and phases, swaps the 
phases between the images, and saves the results as images (there are some comments in the 
template script to guide you). Once you have done this, swap the magnitudes instead of the phases 
and compare. What do you conclude?

Filtering

Converting an image from real space to frequency space makes it easy to do low-pass or high-pass 
filtering. In low-pass filtering, we keep only the longest wavelengths (lowest frequencies), which 
correspond to large-scale features in an image. In high-pass filtering, we keep only the shortest 
wavelengths (highest frequencies), i.e., the small scale features of an image.

Download the script:

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/filtering/filtering_template.py

and the associated images (these are the same as the ones from the previous phase-swap exercise, 
but you could a different .jpg or .png image if you like). If you run the script, you should see that it 
produces a low-pass filtered image by masking out the magnitudes corresponding to the smallest 
scales. Your task is to adapt the script to make a high-pass filtered image (you can do this 
immediately below the code that is there in the script). Once you have done this, experiment with 
changing the filter size (change maskRadius) and see the effect this has on the image. You will see 
some artefacts in the images – what causes this? If you have time, investigate how to mitigate this.

http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/filtering/filtering_template.py
http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/phaseSwap/
http://www.acru.ukzn.ac.za/~ska2014/materials/fourierlab/magsAndPhases/magsAndPhases.py

	SKA School 2014: Fourier Transforms Lab
	Fourier transforms of 1d functions
	Convolution
	Fourier transforms of images
	Swapping phases and magnitudes
	Filtering

