Python Introduction
UKZN SKA School

1 Whatis python?

Python is a cross-platform (i.e., available on GNU/Linux, Mac, Windows etc.) scripting lan-
guage. It can be used to write large(ish) applications or programs, or simply used as a ‘glue’
language to run other programs in sequence, automating tasks that would otherwise be tedious
(e.g., to make processing pipelines). It is free software.

Python has extensive (and very good) documentation available on the web. See, e.g., http:
//docs.python.org/2/tutorial/index.html for the official tutorial, but of course there
are many others.

2 Running a python program

Python is an interpreted language. To run a python program (e.g., say we have a file called
helloWorld.py), at the terminal:

o)

% python helloWorld.py

Running the python command without specifying the name of a python program will open
the python interpreter in interactive mode, which is useful for testing things out or performing
simple tasks. However, ipython (the ‘i’ stands for ‘interactive’) is a much friendlier interpreter if
you simply wish to use python interactively rather than for running programs.

From the interpreter, it is easy to access built-in documentation for all python functions, mod-
ules etc. using the help command, e.g.,

ipython
import math
help (math.cos)

o® o o°

This will print out a brief description of the function and show what parameters it needs, and
returns.

3 Anatomy of a python program

Fig. 1 overleaf shows a relatively simple python program that illustrates many of the fea-
tures of the language. The code can be downloaded from http://www.acru.ukzn.ac.za/
~ska2013/exampleCode/fetchSDSSImages.py. This program uses python’sbuilt-inurllib
module to download colour images of astronomical objects from the Sloan Digital Sky Survey
(http://www.sdss.org/).

Note that python reads programs from top to bottom, so all function definitions and module
import statements appear at the top (python needs to know what something means before it can
use it).

Indentation has meaning in python - it is used to group statements, e.g., under conditional if
statements, inside for loops, or inside function definitions (using the def statement).
4 Variables and built-in types

Python is a dynamically typed language, which means that variable types do not have to be
explicitly declared before they can be used (unlike C or Fortran). However, it is also strongly

¥ " Feiches oo e with columns

name,

ordinates listed in a simple plain-text catalc

1

2

=

4

3
impart statements: these include external| | 6| import urllib
modules so that we can use functions =7 import os
8
9
10

defined in them import sys

The def statement is used to define - -
functions. Parameters are defined inside | (21 | def fetchsDSSDRBImage(name, RADeg. decDeq. sizeArcmin = 6.0, JPEGFolder = "SDSSDRSImages”. refetch = False):
(). The text inside " "™ is a docstring, _12 v Eetch?s the SDSS . jpg for the given image size using the casjobs webservice, stores them under
. TS JPEGFolder.
used to tell humnans what the function 12
does 15 wau
. — 16
The if statement tests if some r:mn_dmnn] [[57 os path enists (PEoRotder) = Fater:
met, and if s, executes the code indented = 0s..nakedirs{JPEGFolder)
under it. Mote == means equals in Pythan. | 1g |
20 outFileName=JPEGFolder+os.path.sep+name.replace (" ", "_")+".jpg"
Defining a variable. Note that types are not| |21
declared, but to make sure SDSSWidth is SDSSWidt . .
treated as a float and not int, we include | |23 cDSSScale=(s1zeAreminte0. 0)/SDSSWidth = O 2
the decimal paint here 24 if os.path.exists(outFileName) False or refetch == True:
25 # Exception handling - if under try fails for whatever reason, we execute the code under except
2% v try:
27 urlstring="http://skyservice.pha. jhu.edu/DR8/IngCutout/getipeg.aspxPra="+str (RADeg)+"&dec="+str(decDeg)
Calling a function in an external madule. 28 I urlString=urlString+”&scale="+str (SDSSScale)+ width="+str(int (SDSSWidth))+"&height="+str(int (SDSSNidth))
The urlretrieve function is defined in urllib g urllib.urlretrieve (urlString, filename - outFileName) |
except:
31 raise Exception, "couldn't get SDSS DR8 image"
32
<< T
34 # Main
35 ¥ if len(sys.argv) < 4:
36 print "Run: % fetchSDSSImages.py catalogFileMName outDir sizeArcmin®
37 print "
38 print "catalogFileName: a plain-text file containing white space separated columns name, RA(degrees), dec(degrees)"
39 print "outDir: directory name where images will be stored”
40 print "sizeArcmin: image dimensions in arcmin®
41
42 else:
Acomment. Everything after a # symbol e T — T T— - = - — — — —
is ignored until the end of that line z; L Parse ;n;m;mlal;:-:jrgum-,-nt - note that [0] is the name of the program when using sys.argv I
46 outDir=sys.argv[Z]
47 sizearcmin=float(sys.argv[3])
48
49 # Make output directory if it doesn't exist
50 v if os.path.exists{outDir) == False:
51 os.makedirs(outDir)
52
5l

55 we are treati g aries, with a dictionary for each
56 £ Alternatively, we could treat each column of the table as a numpy array - this is what A
Creating a file object called inFile. Objects |57 inFile=file(inFileName, "r") # 'r' for 'reading', 'w' for 'writing
can have functions, in this case readlines() lines=inFile.readlines()
and close(),and like functions in modules, |59 inFile.close()
object attributes are accessed using the 60 catalog=[] # Make an empty list
dot 61 v for line in lines:
62 ¥ if line[0] != "#" and len(line) = 3: # This skips lines t # and blank lines
63 bits=line.split() # its the line into a list according to where whitespace 1s found
64 objDict={} # Make an empty dictionary
Afor loop. The code under the indented 65 objDict['name’]=bits[0]
block is executed for each list element in - | |86 objDict['RADeq’ I=float (bits[1])
turn. Since catalag is a list, which ud objDict['decDeg’ |=float (bits[2]]
is an iterable, we can step through each gg catalog.append(objDict) # Add the dictionary to our list
list item {in this case, each item is a 70 # Fetch SDSS image for each object in turn
dictionary) and use this to feed parameters| 7; + [¥or oB3DLcT In catalog:
inta our fetchSDSSDRBImage function 22 print "s>> Fetching SDSS image of %s ..." % (objDict['name'])
This is neater than using indices - e.g., we | |72 fetchSDSSDR3Image (objDict(name'], objDict['RADeg'], objDict['decDeg'], JPEGFolder = outDir)
could iterate aver a range and access 74
list elements as catalog[i] instead 75

Figure 1: An example python program, with elements labelled and briefly explained.

typed, so this means that the following will give an error:

% a=6
% print ’'Cheese’ + a
TypeError: cannot concatenate ’"str’ and ’'int’ objects

Here is a brief description of the main built-in types, look at the example programs for how to
use them (or read the documentation):

e int - an integer, e.g., 2

o float - a float, e.g, 3.141592654

e str - a string, e.g., ‘cheese’

You can convert between types by using int (), float (), str () etc., e.g.,
% a=6
$ float (a)

()
(@]

See also the example http://www.acru.ukzn.ac.za/~ska2013/exampleCode/fromJon/
python_variables.py.

Also built-in are lists and dictionaries. These are used in the example code shown in Fig. 1.

Lists can contain any python object, and they can be mixed, i.e., they can contain floats, ints,
strings etc. -i.e., a=[’Cheese’, 3.141592654, 7] is a valid list. List items can be accessed
using square brackets [], e.g., for the above list,

% alll]
3.141592654

since the first item in the list is at index 0.
Lists can be sliced using :. For example, to return only the last two items of the above list:

$ all:]
[3.141592654, 7]

To access items in reverse order we can use negative indices, e.g.,

% al-2]
3.141592654

To reverse the order of a list, use

$ al::-1]
[7, 3.141592654, 'cheese’]

Dictionaries are unordered lists where the elements are accessed using keys. They are defined
using curly brackets {}. In the below example, ‘bread” and ‘filling” are the keys:
sandwich={'bread’: ’white’, ’filling’: 'cheese’}
sandwich
{"bread’: ’white’, ’"filling’: 'cheese’}

To iterate over all keys in a dictionary, use e.g.,

for key in sandwich.keys() :
print sandwichlkey]

o° oo

cheese
white

5 Classes and objects

Python is an object oriented language, like C++ or Java. Unlike C++, classes have no private
variables or functions. For an example of classes and objects in action, see http://www.acru.
ukzn.ac.za/~ska2013/exampleCode/classExample.py.

6 The standard library

Python has an extensive standard library with very good documentation, available at http:
//docs.python.org/2/1library/.

7 Installing additional modules from source

It is relatively straightforward to install additional python modules from source, even without
root access. Almost all modules or packages come with an install script called setup.py. This
will build the code using the compilers available on your system if necessary, or just copy it to the
appropriate directories in the case of a module written purely in python.

If you don’t have root access, the way to make modules visible to your python installation is
something like the following (exact paths may vary depending on python version):

% python setup.py install —--prefix=$HOME/local
and add something like the following to your .bashrc file (or equivalent):

export PYTHONPATH=SPYTHONPATH:S$HOME/local/lib/python2.7/site-packages

8 Numpy, scipy and matplotlib

Numpy provides a fast implementation of numerical arrays in python. To get the best out of
it, perform operations using built-in numpy routines and avoid using for loops, which are slow for
very large arrays. Numpy arrays can be sliced and indexed like lists.

Scipy is a package which provides many modules useful for scientific computing - e.g., it
includes modules for interpolation (scipy.interpolate), statistics (scipy.stats), and some
image processing (scipy.ndimage).

Matplotlib is a package which can be used to make a huge variety of publication quality plots.

Documentation for all of these is available and easily accessible on the web (as well as through
python’s built-in help function).

For a simple example of using all of these, see http://www.acru.ukzn.ac.za/~ska2013/
exampleCode/numpyScipyMatplotlibExample.py.

9 Final remarks

The only way to master coding is through practice. Try to make something, read documen-
tation, and look at other people’s code. IPython is particularly good for playing with things to
see how they work. Perhaps try this with the numpy/scipy/matplotlib example. Or take the
classes/objects example and try to make a zoo.

